
You Text, We Sketch: Text-Guided Diffusion for
Vectorized Sketch Generation

Yash Shah∗, Samy Cherfaoui∗

{ynshah,scherfao}@stanford.edu
Department of Computer Science

Stanford University

Abstract

Vectorized sketch generation is an interesting domain of image generation dealing
with vectorized sketches that not just closely resemble the way humans typically
draw but also have the advantage of scaling up or down without loss in image
quality, in contrast to raster (pixelated) images. With the recent popularization of
text-conditioned raster image generation because of the power of human language
to describe complex scenarios succinctly by Glide, DALL-E 2, Imagen, and others,
we extend this idea to vectorized sketch generation in this paper. Precisely, we
explore diffusion models for the problem of text-conditioned vectorized sketch
generation, improving sample quality through classifier-free guidance. Across
five different classes, our model achieves an average Fréchet Inception Distance
(FID) score of 6.5, an average Geometry Score (GS) of 3.4, average Kynkäänniemi
precision and recall of 0.57 and 0.68 respectively, and average image classifier
acc@1 and acc@10 of 56.1 and 92.4 on the Quick, Draw! dataset, achieving
competitive performance on these metrics.1

1 Introduction and Motivation

High quality image generation has become an exciting avenue for research with applications in
generating human faces [1], cartoons [2, 3], medical images [4, 5], human poses [6], inpainting [7],
editing [8], super-resolution [9], and much more. While these and many other works work mostly
with raster (pixelated) images [10, 11], vectorized sketches that make use of strokes and point-slopes
are a more natural way of thinking about how humans draw (generate) images or sketches.

They have the added advantage over raster images of being lightweight in file size, and being able to
scale up or down without loss in image quality, which is possible because vector images work with
strokes and point slopes rather than with individual pixels that determine image resolution.

Architectures like SketchRNN [12], which uses a recurrent neural network for generating stroke-based
drawings, SketchHealer [13], which uses a graph-to-sequence network for recreating partial human
sketches, and SketchKnitter [14], which uses a diffusion model to generate vectorized sketches
through DDIM sampling, are popular. Vectorized sketch generation is of particular interest because it
enables a wide variety of use cases ranging from the ability to generate icons and logos on the fly
for a UI, complex designs that fit on a business card and on a billboard, synthetic data for training,
step-by-step tutorials on sketching, “healing” bad drawings or completing them, and potentially
domain adapting and producing sketches for out-of-vocabulary words.

All works in the space of vectorized sketch generation have focused on either unconditional generation
or conditioning on a part of the sketch for sketch completion or healing. Recent popularization of

∗Equal contribution, order decided by coin flip.
1Github repository code: https://www.github.com/ynshah3/SketchKnitter

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://www.github.com/ynshah3/SketchKnitter


(a) Timelapse of how humans would typically draw a house, i.e., using strokes.

(b) Preservation of image quality with scaling up by vectorized images.

text-conditioned diffusion models like DALL-E 2 [15], Glide [16], and Imagen [17] have shown
potential to generate text-conditioned images—a more natural and effective way of communicating
what kind of image a model should generate through the power of human language, which is able to
describe complex scenarios succinctly. In the human handwriting space, [18] and [19] are popular
works. A key challenge is to come up with an idea that is able to apply text-conditioning to vector
sketch generation under economic and resource constraints when text prompts are not available for
training.

In this paper, we build on the SketchKnitter [14] paper and explore text-conditioned diffusion models
for vectorized sketch generation. Concretely, we make the following key contributions:

1. We come up with a unique way to annotate sketches given limited money and time for
crowdsourcing.

2. We condition on text during training by feeding text tokens into a Transformer [20] used as
a text encoder, and introduce classifier-free guidance to improve sample quality.

3. Across five classes, our model achieves an average Fréchet Inception Distance (FID) score
of 6.5, an average Geometry Score (GS) of 3.4, and average Kynkäänniemi precision and
recall of 0.57 and 0.68 respectively on the Quick, Draw! dataset2, achieving competitive
performance on these metrics.

4. Our model achieves recognizability scores acc@1 and acc@10 of 56.1 and 92.4 on an
AlexNet-based image classifier, outperforming the former state-of-the-art SketchKnitter.

5. We perform ablation studies to analyze learned text embeddings, what happens when
isotropic Gaussian noise is added to them, how metric scores perform per class, and how
metrics are affected by tuning sampling hyperparameters.

To the best of our knowledge, there has not been any previous paper on text-conditioned vectorized
sketch generation.

2 Related Works

Our work is a follow up to and extends the following two works to combine the power of vector
images and text-conditioning:

SketchKnitter [14]. This paper proposes generating sketch stroke sequences in vector format
from noise by denoising diffusion implicit models (DDIMs) [21]. The generative model learns a
distribution over stroke points’ locations from a deformation-based denoising process which starts
from noise. It also learns to predict a binary pen state for each of the stroke points representing
whether the pen is “touching the paper” when “sketching” the strokes. The paper also explores
conditional generation through classifier guidance for tasks such as sketch completion and healing by
conditioning on certain parts of the sketch. Unconditional diffusion models rarely allow tailored and
nuanced sketch generation; so, we extend SketchKnitter’s idea to add text-conditioning to the model
by leveraging the power of human language.

2



GLIDE [16]. Motivated by the ability of text-to-image models to handle free-form prompts, this
paper applies guided diffusion to the problem of text-conditioned image synthesis. First, they train
a 3.5 billion parameter diffusion model that uses a text encoder to condition on natural language
descriptions. Then they compare two techniques for guiding diffusion models towards text prompts:
CLIP guidance [22] and classifier-free guidance [23]. Because CLIP is primarily used for jointly
learning an embedding for text and raster images, and given the effectiveness of classifier-free
guidance, we employ Glide’s strategies and apply them to SketchKnitter. Text conditioning requires
lots of annotated images for training, but since we have none and are under resource and economic
constraints, we come up with a unique and quick labelling strategy that is able to fulfill the requirement
and can be generalized to when carefully crafted annotations are available.

3 Problem Statement

The problem that we will be investigating is how to generate vectorized sketches conditionally from
a specified text prompt. More precisely, we are given a sketch s0 = {s(1), s(2), . . . , s(N)}, where
∀i, s(i) = (∆x(i),∆y(i), g(i)) are 3-D vectors. (∆x(i),∆y(i)) represents the coordinate offsets
during the pen’s moving trajectory and g(i) represents the binary pen state, denoting whether the
pen is touching the paper. Our goal is to learn a probability distribution over the offsets from the
training data by a diffusion model conditioned on a text prompt c that identifies what the sketch s0
represents. Then, a sketch can be drawn given the estimated coordinate offsets for each point and the
corresponding pen state inferred by a pen-state network.

3.1 Dataset

We use Google’s Quick, Draw! dataset2, which consists of 50 million vectorized drawings across 345
categories collected from a drawing game Google created. We select categories apple, umbrella,
moon, shoe, lion, and fish, each with 70k samples. Our techniques can, however, be extended to
many more categories given sufficient resources.

The Quick, Draw! dataset does not come with labelled annotations for every sketch, so, to condition
on text prompts, we employ a unique way to get the job done and not have to manually annotate or
crowdsource around 420k sketches. We randomly assign one of the following prompts to sketches
from either class by constructing grammatically correct sentences:

• This is {a,an,the} {apple,umbrella,moon,shoe,lion,fish}
• Sketch of {a,an,the} {apple,umbrella,moon,shoe,lion,fish}
• Image of {a,an,the} {apple,umbrella,moon,shoe,lion,fish}
• Here is {a,an,the} {apple,umbrella,moon,shoe,lion,fish}

We construct a vocabulary for words from this mini universe after converting these prompts to
lowercase, prepend and append the special tokens <start> and <end>, and convert to indices. The
idea behind using a small number of prompts is that they can be quick to produce while also being
representative of how working with a larger, more carefully crafted, set of text prompts given time
and money could be.

For processing the sketches, we sanitize them by removing all sketch vectors with size more than 96,
also removing large gaps between sketch points by clipping them to lie in the range [−1000, 1000].
We further normalize each sketch vector by dividing by the standard deviation of all sketch points.
After these pre-processing steps, the number of samples left for training per class is visualized in
figure 2.

2https://github.com/googlecreativelab/quickdraw-dataset

3

https://github.com/googlecreativelab/quickdraw-dataset


Figure 2: Number of training samples per class after pre-processing.

3.2 Evaluation Metrics

The quantitative metrics we use to evaluate our model are:

• Fréchet Inception Distance (FID) [24] which measures the similarity of generated sketches
to real drawings based on the Fréchet distance between Gaussians fitted to image feature
representations from the Inception network,

• Geometry Score (GS) [25] which compares the geometric properties of the generated and
true image data manifolds, and

• Kynkäänniemi et al.’s image generation precision and recall metrics [26]. Kynkäänniemi
precision measures the likelihood that a random image from our generated distribution Pg
falls within the support of our real image distribution Pr. Recall measures the likelihood
that a random image from Pr falls within the support for Pg .

We also train a multi-category classifier built on AlexNet on the training set of all 345 QuickDraw
categories. We use higher recognition accuracy as a proxy to determine the recognizability of sketches.
Following the practices used in SketchHealer [13] and SketchKnitter [14], we use acc@1 and acc@10
as evaluation metrics. acc@K denotes the accuracy of obtaining the true category from AlexNet
within the top K predictions. We also evaluate our samples qualitatively by ensuring that they visually
look like the text prompt we feed before sampling.

4 Technical Approach

We use the architecture from the SketchKnitter paper [14] as a baseline, which is as follows: During
the forward process, noise is gradually added to the sample sketches by drifting each sketch’s
coordinate offsets along the x and y directions. Then, during the reverse process, a trainable U-
Net ϵ(t)θ (st) ∈ RN×2 estimates noise in the form of coordinate offsets for a sketch st ∈ RN×2 at
timestep t. A trainable embedding and a decoding layer transforms the input st into an embedding
et ∈ RN×128, and the penultimate feature embedding is converted back to coordinates. A single
head attention layer is used to inject timestep t’s embedding into the convolution blocks in the U-Net
during downsampling following DDIM [21].

The diffusion model learns a distribution over coordinate offsets for sketch points. However, to
predict a binary pen state for each of the stroke points, the feature vector from the penultimate layer
of the U-Net is passed through a trainable linear layer followed by a sigmoid function to get ĝ(i).
When ĝ(i) > 0.5, it indicates that the pen is touching the canvas at point i. This is done for each
timestep in the generative process.

We add own modifications to the above, illustrated in Figure 3. To condition on text, we follow
GLIDE [16]: we feed text tokens into a Transformer [20] model. The output of this transformer
is used in two ways: first, the final token embedding is used in place of a class embedding in
the U-Net model; second, the last layer of token embeddings (a sequence of feature vectors) is

4



Algorithm 1 Training the model using classifier-free guidance

Require: puncond: probability of unconditional training
Require: γ: weight given to the pen state loss

1: repeat
2: (st, c) ∼ p(st, c) ▷ Sample data with text prompt from the dataset
3: c← ∅ with probability puncond ▷ Randomly discard conditioning to train unconditionally
4: Ld(θ)← E

[
∥ϵ(t) − ϵ

(t)
θ (st|c)∥22

]
▷ ℓ2 loss between estimated and generated noise

5: Lp(θ)← 1
N

∑N
i=1

[
−g(i) log(ĝ(i))− (1− g(i)) log(1− ĝ(i))

]
▷ Pen state loss

6: L(θ)← Ld(θ) + γLp(θ) ▷ Total training loss
7: Take gradient step on ∇θL(θ) ▷ Optimization of denoising model
8: until converged

Algorithm 2 Sampling from the model using classifier-free guidance

Require: w: guidance strength ≥ 1
Require: c: conditioning information for conditional sampling

1: ϵ̂θ(xt|c)← ϵθ(xt|∅) + w · (ϵθ(xt|c)− ϵθ(xt|∅))
2: v ∈ RN×128 ← Feature vector from penultimate layer of U-Net
3: fψ ← Trainable linear layer
4: ĝ = sigmoid(fψ(v)) ▷ Estimated pen state

separately projected to the dimensionality of each attention layer throughout the U-Net model, and
then concatenated to the attention context at each layer. To further improve sample quality, we employ
the classifier-free guidance strategy [23] as detailed by Algorithms 1 and 2. The reason for using
classifier-free guidance over classifier guidance is its simplicity, leveraging the knowledge that the
diffusion model has already learned, and not having to train a separate classifier on noisy samples.

The loss function optimized during training is:

E
[
∥ϵ(t) − ϵ

(t)
θ (st|c)∥22

]
+ γ

1

N

N∑
i=1

[
−g(i) log(ĝ(i))− (1− g(i)) log(1− ĝ(i))

]
,

where the first term is the ℓ2 loss between the estimated and generated noise, and the second term is
the mean binary cross entropy loss between the estimated and target pen state, weighted by γ which
is a hyperparameter.

Figure 3: Our model architecture comprising of a U-Net for approximating noise and a Transformer
for learning text embeddings.

5



Table 1: Model evaluation on FID, GS, Precision, and Recall (n=512 samples) using the best w for a
given class. This is w=5 for all classes except moon which achieves maximum performance at w=1.

Model FID ↓ GS ↓ Prec ↑ Rec ↑
SketchKnitter (Unconditional) 6.9 3.4 0.52 0.88
Ours (on text prompts for class apple) 6.4 3.1 0.60 0.75
Ours (on text prompts for class umbrella) 7.0 4.5 0.52 0.54
Ours (on text prompts for class moon) 6.6 3.0 0.58 0.71
Ours (on text prompts for class shoe) 6.0 3.2 0.57 0.77
Ours (on text prompts for class lion) 18.4 5.6 0.13 0.52
Ours (on text prompts for class fish) 6.3 3.1 0.59 0.74
Average across classes (w=5) 8.5 3.8 0.50 0.66
Average across classes (w/o lion) (w=5) 6.5 3.4 0.57 0.68

Table 2: Recognition results for SketchKnitter and our model on an AlexNet model. We use the same
AlexNet parameters as those present in the SketchKnitter paper and evaluation code.

Model acc@1 acc@10
SketchKnitter (Unconditional) 52.4 90.2
Average across classes (w=5) 55.6 92.1
Average across classes (w/o lion) (w=5) 56.1 92.4

5 Experiments

To run our experiments, we sample 512 images for every possible pair of sketch category (class ∈
{apple, umbrella, moon, shoe, lion, fish}) and w. Recall from Algorithm 2 that w represents
the guidance strength hyperparameter and for our experiments, w ∈ {1, 2, 3, 4, 5}. w signifies
the weight our sampling process should put on our conditioning information, where w = 0 is
unconditional sampling (and, by extension, the output of SketchKnitter). We use this approach to
evaluate the success of including conditioning information in our sampling process. The baseline
we use is SketchKnitter, which is described in detail in the first half of Section 4, since it achieves
state-of-the-art performance in vectorized sketch generation on all four of our evaluation metrics.

5.1 Model Hyperparameters

Our U-Net makes use of 3 residual network blocks, 4 attention heads, attention resolutions of 16, 8,
and dropout of 0.1. The transformer expects a text token length of 6, has a width of 24, 2 heads, a
depth of 5, and uses Layer Norm after the output layer. We use 1000 diffusion steps for training and
sampling, learning rate of 1e-4, batch size of 512, AdamW optimizer with a weight decay of 0.001,
uniformly annealing LR scheduler, linear noise scheduler, and run the model for 100k iterations.

Our model is trained using a single NVIDIA T4 GPU on Google Cloud Provider.

5.2 Results

For our baseline model, which is SketchKnitter without text-conditioning, we directly take its
evaluation performance from the paper. Section 3.2 provides a detailed explanation of the metrics we
use for evaluation. We want to achieve low FID and GS scores (the real (human drawn) and generated
image distributions should have similar features and geometric properties) and high precision and
recall (the real (human drawn) and generated image distributions should overlap as much as possible).

We include the results of our experiments in Table 1, reporting them for the best w value for each
class. We are able to achieve state-of-the-art performance or near state-of-the-art performance for
FID, GS, and precision for 5 of our classes. Since FID and GS tend to reflect human-perceived
similarity to a real image, we believe that this indicates that our samples accurately mirror their
associated category. This is corroborated by our qualitative observations: Figure 4 shows 13 samples
generated from each class.

6



Figure 4: Samples generated by the model for w = 5 on different text prompts.

We do note that we were not able to achieve state-of-the-art performance on recall, even when
discounting our outlier lion class. However, our recall is still on par with former state-of-the-art
solutions such as SketchRNN [12] and SketchPix2Seq [27], which achieve recall scores of 0.72 as
compared to our value of 0.68. Since our precision performs much better, this likely means that our
model is mimicking the real sketch image distribution quite well but possibly only focusing on a
small portion of it, indicating minor mode collapse. We also achieve state-of-the-art recognizability
metrics on an AlexNet-based image classifier, surpassing the results of SketchKnitter even when
factoring in our outlier class lion. These results are presented in Table 2.

5.3 Discussion

Though 5 of our classes achieved maximal performance when w = 5, it is interesting to note that
moon achieved its best performance when w = 1, which is when the U-Net samples completely
conditionally without any influence from the unconditionally-trained model, although there is no
apparent trend that changing w has for this particular class over different metrics like other classes
have. A possible reason why this might be is because moon is, arguably, the easiest class to draw
sketches of, and increasing guidance strength, thus, does not amount to a clear improvement in sample
quality. We also note that every w value for moon results in state-of-the-art or near state-of-the-art
results across all metrics so this discrepancy may be accounted for by sampling variance.

We also note that one class lion performs much worse than any of the others. We have two possible
hypotheses for this phenomenon. The first is that there is a training data disparity between lion
and the other 5 classes. In fact, there are 3 times as many samples in any other class as there are in
lion. With fewer data points, our model may have had a tougher time generalizing on this class. Our
second hypothesis is that lion is simply harder to draw and requires more stroke points than any
other class. We can observe this in Figure 4. The other classes appear to be the product of much
fewer strokes and can all be drawn without lifting the “pen” once. lion, on the other hand, requires
many more strokes and possible shifts in pen state. We note that SketchKnitter labeled lion as a
complex category since it required >100 stroke points on average. The results of SketchKnitter also
indicate that their metrics performed much worse on complex sketches. We did not separate our
categories into categorical complexity due to resource constraints but this would be an interesting
future analysis direction.

We note that, unlike the other metrics, our recognizability scores (for w = 5) perform better on all
of our classes including lion. This likely demonstrates the importance of including any form of
conditioning information during sampling since even though human perception proxy metrics perform
worse, our sampling process is likely generating sketches which encode category-coded features that
our AlexNet model picks up on.

7



6 Ablation Study

6.1 Evolution of Sketches with Time

In figure 5, we visualize the evolution of the sketch generation process for a single sketch from each
of the 6 classes we train our model on. Out of the 1000 diffusion steps over which we sample, the
first 600 steps make very slow progress in terms of gradually estimating the noise; the sketches are
not generally recognizable before this point. In the last 400 steps, the progress toward sketching a
recognizable sample is quick. While the object being sampled is “recognizable” by the 900th step,
the last 100 steps work towards smoothing out the corners of the strokes, making them look more
like curves and realistic.

t=1 t=100 t=200 t=300 t=400 t=500 t=600 t=700 t=800 t=900 t=1000

Figure 5: Evolution of sketches sampled from each class at timesteps t ∈ {1, 100, . . . , 1000}.

6.2 Text Embedding

We visualize how the embeddings are learned for the text prompts we provide to the model during
training in figure 6. This is done using the Uniform Manifold Approximation and Projection (UMAP)
algorithm [28], which is able to perform non-linear dimensionality reduction, using the Euclidean
metric.

There is an underlying structure that our model learns. All of the individual words (<start>, shoe,
an, etc.), even though they appear in prompts for different classes, get mapped very close in the
embedding space. Words that do not correspond to object names (<start>, <end>, image, this,
here, of, is, the, and sketch) get mapped farther away from those that correspond to object names,
implying that the model learns to differentiate between these subgroups. An interesting observation
is that a and an also get mapped close to the object classes in the embedding space, possibly because
their presence accentuates the difference between classes that are nouns (apple and umbrella) and
those that are not (fish, lion, etc.).

6.3 Isotropic Gaussian Noise Perturbation of Text Embedding

The importance of text embedding over conditioning on only class labels is that, for the model, class
labels act as distinct entities that need to be provided as is during the sampling stage to be able to
generate a sketch for; i.e., if a model sees class labels 1, . . . , k during training, it needs to see one of
these k labels during sampling time to condition on. The advantage for text embedding is that similar
entities are mapped closer together in the embedding space and it is possible to move through this
continuous space.

8



Figure 6: Visualization of text prompts used for training.

A sign of a robust model is that it is invariant to small perturbations to the text embedding. Here, we
explore this question by adding isotropic Gaussian noise to a text embedding prior to feeding it to
the model during the sampling stage. More precisely, if ζ is the embedding of a text prompt c, then
we perturb ζ to get ζ + ε where ε ∼ N (0, 1). Figure 7 shows that the model is still able to generate
good quality samples from these perturbed embeddings, highlighting the power of using text over
class labels.

Figure 7: Samples generated after adding isotropic Gaussian noise to text embeddings.

6.4 Changing the Guidance Score

We note in Figures 8 and 9 that increasing the guidance score generally improves our metrics. The
one exception, moon, is discussed in Section 5.3. This is in line with what is expected since higher
guidance scores encode more conditional information which can be used to generate more informed
samples.

9



Figure 8: Plot of FID versus guidance score per class.

Figure 9: Precision vs Recall trade off. We sweep over guidance scores of {1, 2, 3, 4, 5}.

7 Conclusion and Future Work

Using SketchKnitter as a baseline, we were able to construct a model that uses text-conditioning to
generate vectorized sketches. Using simple annotation techniques and inspired by GLIDE, we are
able to condition on text during training by feeding text tokens into a Transformer serving as a text
encoder. We diverge further from SketchKnitter’s architecture by utilizing classifier-free guidance as
opposed to classifier guidance which simplifies the sampling process while still generating impressive
samples due to the knowledge learned by the diffusion model. Across five different classes, our
model achieves competitive performance on various metrics. Text-conditioned vectorized sketch
generation is an important yet under-explored field of generative modeling and our model hopefully
represents the first step to generating accurate sketches for use in UIs, advertising, or even damaged
artwork restoration.

Further research can look into how generalizable this approach is in terms of training on more
carefully curated text annotations and how easily our model can extend to out-of-vocabulary words,
how sampling can be sped up since 1000-step diffusion is much slower than non-diffusion approaches,
and how an evaluation framework can be constructed for conditional vectorized sketch generation.
Since there is no precedent for text-conditioned vectorized sketch generation, we used popular
evaluation metrics from the unconditional vectorized sketch generation literature but there may be
better methods more suited towards conditional approaches.

10



References
[1] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for

improved quality, stability, and variation. In International Conference on Learning Representa-
tions, 2018.

[2] Yanghua Jin, Jiakai Zhang, Minjun Li, Yingtao Tian, Huachun Zhu, and Zhihao Fang. To-
wards the automatic anime characters creation with generative adversarial networks. CoRR,
abs/1708.05509, 2017.

[3] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation.
In International Conference on Learning Representations, 2017.

[4] Waqar Ahmad, Hazrat Ali, Zubair Shah, and Shoaib Azmat. A new generative adversarial
network for medical images super resolution. In Scientific Reports 12, 9533, 2022.

[5] Wei Peng, Ehsan Adeli, Qingyu Zhao, and Kilian Pohl. Generating realistic 3d brain mris using
a conditional diffusion probabilistic model. 12 2022.

[6] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool. Pose guided
person image generation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[7] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative image
inpainting with contextual attention. arXiv preprint arXiv:1801.07892, 2018.

[8] Peiye Zhuang, Oluwasanmi O Koyejo, and Alex Schwing. Enjoy your editing: Controllable
{gan}s for image editing via latent space navigation. In International Conference on Learning
Representations, 2021.

[9] Jingwei Guan, Cheng Pan, Songnan Li, and Dahai Yu. Srdgan: learning the noise prior for super
resolution with dual generative adversarial networks. arXiv preprint arXiv:1903.11821, 2019.

[10] Songwei Ge, Vedanuj Goswami, Larry Zitnick, and Devi Parikh. Creative sketch generation. In
International Conference on Learning Representations, 2021.

[11] Runtao Liu, Qian Yu, and Stella Yu. Unsupervised sketch to photo synthesis. 2020.

[12] David Ha and Douglas Eck. A neural representation of sketch drawings. In International
Conference on Learning Representations, 2018.

[13] Guoyao Su, Yonggang Qi, Kaiyue Pang, Jie Yang, and Yi-Zhe Song. Sketchhealer: A graph-to-
sequence network for recreating partial human sketches. In BMVC, 2020.

[14] Qiang Wang, Haoge Deng, Yonggang Qi, Da Li, and Yi-Zhe Song. Sketchknitter: Vectorized
sketch generation with diffusion models. In The Eleventh International Conference on Learning
Representations, 2023.

[15] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[16] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

[17] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

11



[18] Yuanzhi Zhu, Zhaohai Li, Tianwei Wang, Mengchao He, and Cong Yao. Conditional text image
generation with diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14235–14245, 2023.

[19] Troy Luhman and Eric Luhman. Diffusion models for handwriting generation. arXiv preprint
arXiv:2011.06704, 2020.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[21] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. CoRR,
abs/2010.02502, 2020.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[23] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[24] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[25] Valentin Khrulkov and Ivan Oseledets. Geometry score: A method for comparing generative
adversarial networks. In International conference on machine learning, pages 2621–2629.
PMLR, 2018.

[26] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. CoRR, abs/1904.06991, 2019.

[27] Yajing Chen, Shikui Tu, Yuqi Yi, and Lei Xu. Sketch-pix2seq: a model to generate sketches of
multiple categories. arXiv preprint arXiv:1709.04121, 2017.

[28] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

12


	Introduction and Motivation
	Related Works
	Problem Statement
	Dataset
	Evaluation Metrics

	Technical Approach
	Experiments
	Model Hyperparameters
	Results
	Discussion

	Ablation Study
	Evolution of Sketches with Time
	Text Embedding
	Isotropic Gaussian Noise Perturbation of Text Embedding
	Changing the Guidance Score

	Conclusion and Future Work

