

Can a Set of Calibrated Weak Learners Create a Single Calibrated Strong Learner?

Yash Shah*, Minseok Bae*, Jason Park* {ynshah,minseok,jpark26}@stanford.edu

Introduction

Calibration: $\mathbb{P}(\hat{y} = y | \hat{p} = p) = p, \forall p \in (0,1)$ i.e., among the samples a model assigned a probability of 0.8, approximately 80% of them belong to the positive class.

Advantages

- Trustworthy, reliable, and robust models
- Can indicate when a model is likely to be incorrect and humans must be involved
- Application to safety-critical decision-making tasks:
 - autonomous driving
 - healthcare
 - time series forecasting, etc.

Problem Setup

We focus our attention toward the AdaBoost ensemble algorithm, known to be highly uncalibrated. We answer the question, "can a set of calibrated weak learners create a single calibrated strong learner?".

1) Platt Scaling [1]: $\mathbb{P}(y = 1|\hat{p}) = \sigma(a\hat{p} + b)$ 2) Isotonic Regression [2]: $\arg\min_{g} \sum_{i} (g(\widehat{p_i}) - y_i)^2$ 3) Beta calibration [3]: $\mu_{beta}(s; a, b, c) = \frac{1}{1 + \frac{1}{(e^c s^a / (1 - s)^b)}}$ 4) Reliability diagram: Plot of expected sample accuracy as a function of model confidence

Related Works

Datasets

Name	Samples	Features	(-) class	(+) class
landsat	6435	36	{1,7}	{2,3,4,5,6}
abalone	4177	8	{1,,9}	{10,,29}
yeast	1484	8	{1,3}	{2,4,,10}

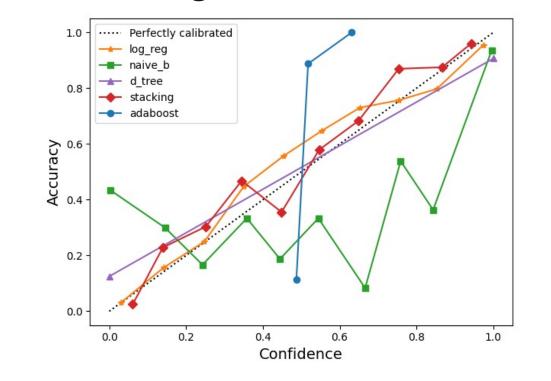
From the UCI Machine Learning Repository [4]: a) landsat: predict soil type from multi-spectral values of pixels in 3x3 tiles of a satellite image

Future Work

Given that our algorithm currently is a little computation intensive, future efforts will focus on analyzing and optimizing the computational efficiency compared to post-hoc calibration techniques. Additionally, we aim to extend our research to multi-class classification tasks to broaden the utility of our findings. This will help ensure an effective balance between accuracy and computational practicality.

References

[1] Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in



Our Contributions

- 1. A novel algorithm using doubly- calibrated weak decision stumps to produce a single calibrated strong ensemble classifier using AdaBoost
- 2. Improvement for Thresholded Adaptive Calibration Error (TACE) over previous works
- 3. Ablation studies to verify utility and integrity of our proposed algorithm

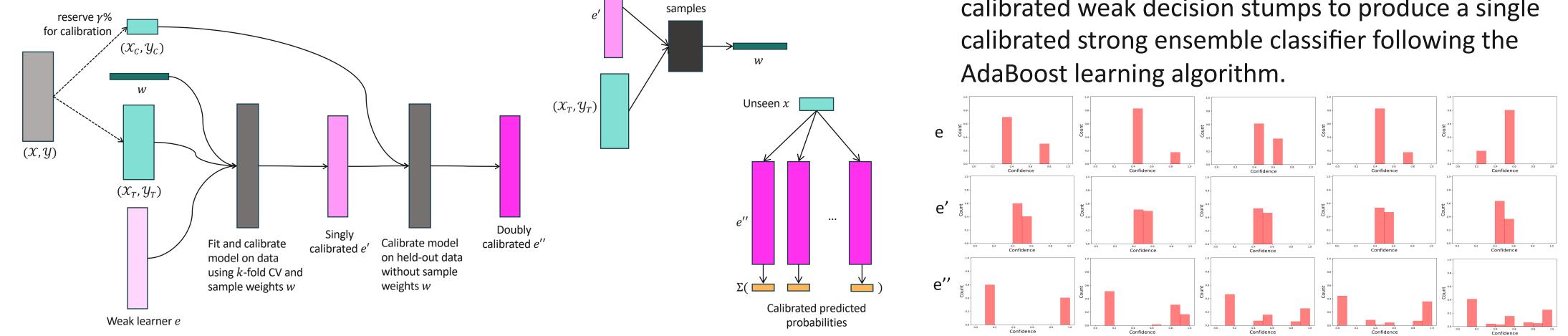
- b) abalone: predict age of abalone given sex, length, weight, rings, diameter, etc.
- c) yeast: predict cellular localization sites of proteins given numeric scores and signals We do not perform any pre-processing on these datasets.

Models

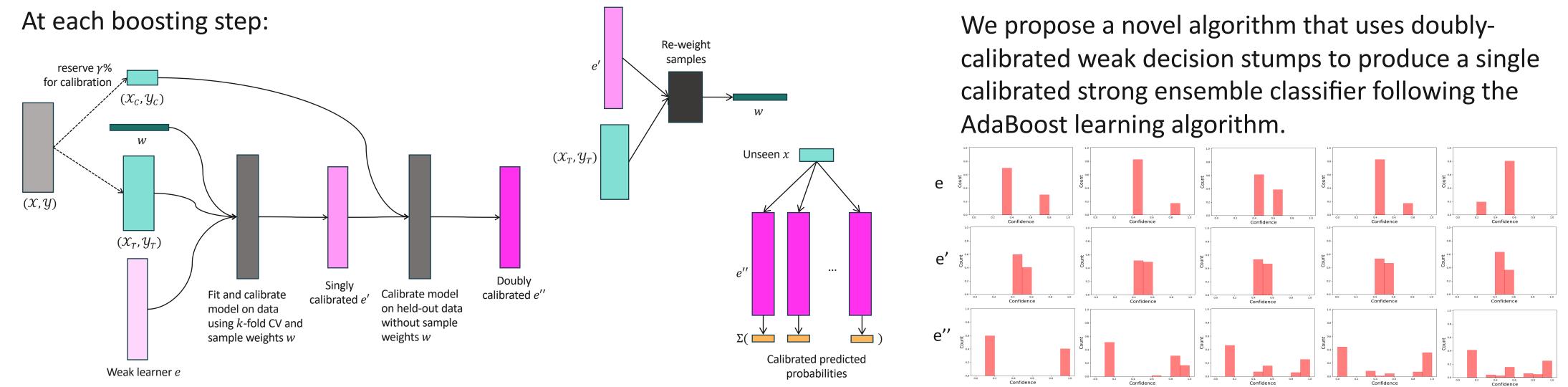
• Logistic Regression: Solved using the quasi-Newton LBFGS [5] algorithm by computing estimates of the inverse Hessian matrix • Naive Bayes: A multinomial NB classifier • Decision Tree: Gini loss splits; max depth 25 • Stacking: Stack of the above three classifiers; logistic regression on their outputs (5-fold CV) • AdaBoost: Sequence of 200 decision stumps fit using the SAMME.R [6] algorithm which uses soft probabilities for re-weighting

Large Margin Classifiers, 1999. [2] Zadrozny and Elkan. Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In *ICML*, 2001. [3] Kull, et al. Beta calibration: a wellfounded and easily implemented improvement on logistic calibration for binary classifiers. In AISTATS, 2017. [4] Kelly, et al. The UCI Machine Learning Repository, https://archive.ics.uci.edu.

[5] Liu and Nocedal. On the limited memory bfgs method for large scale optimization. In Mathematical *Programming* 45, pp. 503–528, 1989. [6] Zhu, et al. Multi-class adaboost. In Statistics and its interface, 2006.



Methods



Results

0.8

Accuracy

0.2

0.0

dataset	metric	uncal	platt	isotonic	beta	ours
landsat	Train ACC (1)	0.930	0.920	0.920	0.920	0.895
	Test ACC (↑)	0.900	0.900	0.897	0.902	0.882
	Train TACE (\downarrow)	0.397	0.396	0.396	0.396	0.036
	Test TACE (↓)	0.365	0.047	0.043	0.044	0.032
abalone	Train ACC (1)	0.800	0.798	0.798	0.798	0.754
	Test ACC (↑)	0.788	0.783	0.795	0.788	0.755
	Train TACE (\downarrow)	0.282	0.283	0.283	0.283	0.043
	Test TACE (↓)	0.276	0.054	0.051	0.048	0.048
yeast	Train ACC (1)	0.785	0.783	0.783	0.783	0.724
	Test ACC (↑)	0.734	0.714	0.720 ₃	0.714	0.731
	Train TACE (\downarrow)	0.277	0.273	0.273	0.273	0.045
	Test TACE (↓)	0.224	0.066	0.063	0.061	0.056

Our experimental results are evaluated on two metrics: Accuracy (ACC) and Thresholded-Adaptive Calibration Error (TACE). We see that our model allows us to achieve the best of both worlds, outperforming traditional calibration methods and thus excelling in both accuracy and calibration.

