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1) Platt Scaling [1]: 
ℙ 𝑦 = 1 𝑝̂ = 𝜎 𝑎𝑝̂ + 𝑏

2) Isotonic Regression [2]:
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3) Beta calibration [3]:
𝜇$%&' 𝑠; 𝑎, 𝑏, 𝑐 = ;1 1 + 1/(𝑒(𝑠'/ 1 − 𝑠 $)

4) Reliability diagram: Plot of expected 
     sample accuracy as a function of model 
     confidence

From the UCI Machine Learning Repository [4]:
a) landsat: predict soil type from multi-spectral 

values of pixels in 3x3 tiles of a satellite 
image

b) abalone: predict age of abalone given sex, 
length, weight, rings, diameter, etc.

c) yeast: predict cellular localization sites of 
proteins given numeric scores and signals

We do not perform any pre-processing on these 
datasets.

o Logistic Regression: Solved using the quasi-
Newton LBFGS [5] algorithm by computing 
estimates of the inverse Hessian matrix

o Naive Bayes: A multinomial NB classifier
o Decision Tree: Gini loss splits; max depth 25
o Stacking: Stack of the above three classifiers; 

logistic regression on their outputs (5-fold CV)
o AdaBoost: Sequence of 200 decision stumps 

fit using the SAMME.R [6] algorithm which 
uses soft probabilities for re-weighting

We propose a novel algorithm that uses doubly-
calibrated weak decision stumps to produce a single 
calibrated strong ensemble classifier following the 
AdaBoost learning algorithm.
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dataset metric uncal platt isotonic beta ours

landsat

Train ACC (↑) 0.930 0.920 0.920 0.920 0.895
Test ACC (↑) 0.900 0.900 0.897 0.902 0.882

Train TACE (↓) 0.397 0.396 0.396 0.396 0.036
Test TACE (↓) 0.365 0.047 0.043 0.044 0.032

abalone

Train ACC (↑) 0.800 0.798 0.798 0.798 0.754
Test ACC (↑) 0.788 0.783 0.795 0.788 0.755

Train TACE (↓) 0.282 0.283 0.283 0.283 0.043
Test TACE (↓) 0.276 0.054 0.051 0.048 0.048

yeast

Train ACC (↑) 0.785 0.783 0.783 0.783 0.724
Test ACC (↑) 0.734 0.714 0.7203 0.714 0.731

Train TACE (↓) 0.277 0.273 0.273 0.273 0.045
Test TACE (↓) 0.224 0.066 0.063 0.061 0.056

Given that our algorithm currently is 
a little computation intensive, future 
efforts will focus on analyzing and 
optimizing the computational 
efficiency compared to post-hoc 
calibration techniques. Additionally, 
we aim to extend our research to 
multi-class classification tasks to 
broaden the utility of our findings. 
This will help ensure an effective 
balance between accuracy and 
computational practicality.
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ours

Calibration: ℙ @𝑦 = 𝑦 𝑝̂ = 𝑝 = 𝑝, 	 ∀𝑝 ∈ 0,1
i.e., among the samples a model assigned a 
probability of 0.8, approximately 80% of them 
belong to the positive class.

ü Trustworthy, reliable, and robust models
ü Can indicate when a model is likely to be 

incorrect and humans must be involved
ü Application to safety-critical decision-making 

tasks:
q autonomous driving
q healthcare
q time series forecasting, etc.

We focus our attention toward the AdaBoost 
ensemble algorithm, known to be highly 
uncalibrated. We answer the question, “can a 
set of calibrated weak learners  create a single 
calibrated strong learner?”.

1. A novel algorithm using doubly- calibrated 
weak decision stumps to produce a single 
calibrated strong ensemble classifier using 
AdaBoost

2. Improvement for Thresholded Adaptive 
Calibration Error (TACE) over previous works

3. Ablation studies to verify utility and integrity 
of our proposed algorithm
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Name Samples Features (-) class (+) class
landsat 6435 36 {1,7} {2,3,4,5,6}

abalone 4177 8 {1,...,9} {10,...,29}
yeast 1484 8 {1,3} {2,4,...,10}
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Our experimental results are evaluated on two metrics: Accuracy (ACC) 
and Thresholded-Adaptive Calibration Error (TACE). We see that our model 
allows us to achieve the best of both worlds, outperforming traditional 
calibration methods and thus excelling in both accuracy and calibration.


