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1. Introduction
Uncertainty calibration is crucial for creating trustworthy,
reliable, and robust models. It aligns a model’s prediction
confidence with the actual likelihood of those predictions
being correct (Guo et al., 2017). More formally, for a sample
x ∈ X , let f(x) = p̂ denote the predicted probability by
the classifier and ŷ be the label assigned to x, where ŷ = 1
if p̂ ≥ 0.5, else ŷ = 0. For perfect calibration, ∀p ∈
[0, 1],Pr[ŷ = y|p̂ = p] = p.

The importance of model calibration escalates as we start
applying models to safety-critical tasks such as autonomous
driving (Chen et al., 2023), medicine and healthcare (Lin
et al., 2022), face recognition (Kim et al., 2022), and time-
series forecasting (Rasul et al., 2021). With deep neural
networks deployed for a huge number of use cases (Ramesh
et al., 2022; Stiennon et al., 2020; Dosovitskiy et al., 2021),
researchers have addressed model calibration with novel
algorithms for object detection (Pan et al., 2021), NLP
tasks (Zhao et al., 2023), regression (Levi et al., 2020),
multi-modal learning (Zhang et al., 2023), and so on. For
traditional machine learning models, some of the classic
post-hoc parametric and non-parametric calibration meth-
ods (Niculescu-Mizil & Caruana, 2005a) are still popular.

In this paper, we focus our attention on the AdaBoost en-
semble algorithm (Freund & Schapire, 1995), known to be
highly uncalibrated. We answer the question, “Can a set of
calibrated weak learners create a single calibrated strong
learner?” by making the following key contributions:

(1) We propose a novel algorithm that uses doubly-
calibrated weak decision stumps to produce a single
calibrated strong ensemble classifier following the Ad-
aBoost learning algorithm.2

(2) We show an improvement for Thresholded Adaptive
Calibration Error (TACE) over Platt Scaling, Isotonic
Regression, and Beta Calibration on three datasets.

(3) We conduct extensive ablation studies to verify the
utility and integrity of our proposed algorithm.

*Equal contribution, order decided by coin flip. 1Stanford
University. Correspondence to: Jason, Minseok, Yash
<{jpark26,minseok,ynshah}@stanford.edu>.

2Code available at https://github.com/ynshah3/CS229Calibration

2. Related Works
We review existing parametric and non-parametric methods
for calibrating traditional machine learning models, contex-
tualizing our novel approach within the broader field:

Platt Scaling. A parametric approach (Platt, 1999) that fits
a logistic curve to the predicted probabilities of a classifier p̂
by learning parameters a and b to compute calibrated prob-
abilities P[y = 1|p̂] = σ(ap̂ + b) on a held-out set. The
inspiration behind doing this is that uncalibrated model con-
fidences typically exhibit a sigmoidal curve when visualized
as a reliability diagram, which is a plot of expected sample
accuracy as a function of model confidence (Niculescu-
Mizil & Caruana, 2005b). Model predictions p̂ are binned
into M equally-spaced intervals and sample accuracy is
calculated over predictions ŷ that align with target labels y.

Isotonic Regression. A non-parametric method (Zadrozny
& Elkan, 2001) that learns a piecewise constant function g
over classifier predicted probabilities p̂ by minimizing the
squared loss

∑n
i=1(g(p̂i)− yi)

2. It is, however, known to
overfit on small datasets since it is less constrained than
Platt Scaling (Niculescu-Mizil & Caruana, 2005b).

Beta Calibration. Since Platt Scaling assumes Gaussian-
distributed model predictions with infinite support, unrea-
sonable for classifier outputs strictly in [0, 1], Kull, Filho,
and Flach (2017) use the beta distribution with finite support.
This approach can also model the identity function, and is
the current state-of-the-art post-hoc calibration method.

Calibrated Ensembles. (Kumar et al., 2022) show that
a standard and a robust neural network when individually
calibrated on in-domain held-out set and then ensembled by
averaging the predictions mitigates accuracy tradeoffs under
distribution shifts. In the traditional ML space, Niculescu-
Mizil and Caruana (2005b) apply some of the above post-
hoc calibration techniques to AdaBoost and analyze results.

3. Preliminaries
3.1. Problem Setup

Given a set X consisting of N samples, train a classifier f
to predict a binary label y ∈ {0, 1} for each x ∈ X .
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3.2. Problem Motivation

Figure 1: [a-e] show confidence histograms (count density vs
model predicted probabilities) and [f] shows the reliability diagram
for uncalibrated models evaluated on the test set of landsat dataset.

We train five different models on the landsat dataset (see
section 4.2): Logistic Regression, Naive Bayes, Decision
Tree, a stacked-ensemble of these 3 models, and AdaBoost.
Model parameters are mentioned in section 4.1. Figure 1
shows that Logistic Regression, Naive Bayes, Decision Tree,
and the Stacked-ensemble produce confidences such that
they are very confident on a large fraction of the unseen
input samples (seen as peaks at around 0 and 1).

AdaBoost, on the other hand, is highly underconfident; its
predicted probabilities for each unseen sample are clustered
around 0.5. Moreover, it has a calibration curve that is al-
most vertical, as opposed to the other four models having
curves close to the y = x line implying perfect calibration.
Since AdaBoost is highly uncalibrated, several post-hoc cal-
ibration techniques like Platt Scaling, Isotonic Regression,
and Beta Calibration have been applied by previous works
(performance results in section 5.3). These methods, while
calibrating the model to an extent, do not produce perfect
calibration and are applied post training. A natural question
to ask is: given the idea behind Kumar, Ma, Liang, and
Raghunathan (2022) and the fact that a stacked-ensemble
is implictly calibrated when it is composed of individually
calibrated classifiers, can we apply the same learning-based
idea to AdaBoost? We answer this in the following sec-
tion by proposing a novel algorithm that achieves better
calibration errors on multiple datasets.

4. Methods
4.1. Models and Parameters

Logistic Regression: Solves the quasi-Newton Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) al-

gorithm (Liu & Nocedal, 1989) by computing estimates of
the inverse Hessian matrix for optimization by keeping a
history of the past m gradient evaluations to save memory.
This is computationally efficient since inverting the actual
Hessian for computing the approximate Newton direction
for optimization (p = −H−1g) is expensive. The inverse
Hessian itself is approximated using rank-one updates grad-
ually, starting with the identity matrix.

Naive Bayes: A Multinomial Naive Bayes, suitable for
frequency count data and often used in text classification.

Decision Tree: Configured with a max depth of 10; uses
Gini impurity for node splitting.

Stacked Ensemble: Combines Logistic Regression, Naive
Bayes, and Decision Tree models into an ensemble. The
outputs of these classifiers are fed into a Logistic regression
meta-classifier trained via 5-fold cross-validation.

AdaBoost: Adopts 200 decision stumps with max-depth 1,
sequentially fitted with re-weighting of samples to focus on
challenging instances. We use the real version of the Stage-
wise Additive Modeling using a Multi-class Exponential
loss function (SAMME.R) (Zhu et al., 2006) for its quick
convergence, detailed in section 4.3.

4.2. Datasets

NAME SAMPLES FEATURES (−) CLASS (+) CLASS

LANDSAT 6435 36 {1, 7} {2, . . . , 6}
ABALONE 4177 8 {1, ..., 9} {10, . . . , 29}

YEAST 1484 8 {1, 3} {2, 4, . . . , 10}

We use the following three datasets from the UCI Machine
Learning Repository (Kelly et al.) for binary classification:

• landsat: predict soil type from multi-spectral values
of pixels in 3x3 tiles of a satellite image.

• abalone: predict age of abalone given sex, length,
weight, rings, diameter, etc.

• yeast: predict cellular localization sites of proteins
given numeric measurements and signals.

We do not perform any other pre-processing on these
datasets. The plots presented below are created us-
ing T-distributed Stochastic Neighbor Embedding (t-SNE)
(van der Maaten & Hinton, 2008), an unsupervised, non-
linear, dimensionality-reduction technique which minimizes
the KL divergence between joint probabilities of low-
dimensional embeddings and high-dimensional data.
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Algorithm 1 Double Calibration for AdaBoost

Require: s: Number of weak learners
Require: γ ∈ (0, 1): Fraction of input samples to be reserved for calibration. Rest will be used for training
Require: k: Hyperparameter for k-fold cross validation
Require: (X ,Y): set of input samples and labels

1: for weak learner ei ∈ {e1, e2, . . . , es} do
2: (XT ,YT ), (XC ,YC)← split((X ,Y), γ) {reserve γ fraction of the samples randomly for calibration}
3: w ← sample weights from previous step; uniform if first step
4: e′i ← using a k-fold cross validation procedure, fit ei on (k − 1) folds of weighted (XT ,YT ), calibrate ei on the kth

fold with the same weights w, and return predicted probabilities as average over calibrated ei’s from each fold
5: e′′i ← calibrate e′i on (XC ,YC) without any sample weighting
6: Use e′′i as the calibrated weak learner for current step to make predictions on unseen data
7: Use predicted probabilities from e′i to update weights for the next step
8: end for

Figure 2: Confidence histograms for 10 of the 200 weak learners. First row corresponds to the uncalibrated weak learners ei, second to
singly-calibrated e′i, and third to doubly-calibrated e′′i .

4.3. Algorithm

AdaBoost, optimized using the SAMME.R algorithm, works
as follows: at each step i ∈ [s], a weak learner ei is fitted on
w weighted training data. Then, weighted class probability
estimates p̂j are obtained on this data. For a decision stump
fitted on N training samples, a sample j gets a score of
p̂j = k/N , where k is the number of positive samples in the
leaf node that j gets mapped to. p̂j is used to update sample
weights w for the next step. Final predicted probabilites on
unseen x become

∑s
i=1 ei(x).

We make the following modifications: Before starting the
algorithm, we reserve γ fraction of the training data for
calibration. Then, at each step i of the algorithm, instead of
using p̂j from weak learner ei directly, we first use a k-fold
cross validation procedure to train ei on (k − 1) folds of
w weighted samples, then calibrate it on the kth fold using
same weights w. This means that the calibration method
optimizes weighted loss wjℓj for each sample j instead of
just ℓj , which it would have done without sample weighting.
We call this singly calibrated model e′i, the average over k
choices; probabilities p̂j now come from e′i and are used
to update the weights w for the next step. We also save e′′i
which is obtained after calibrating e′i on the γ-held-out set.
Final predicted probabilities, hence, become

∑s
i=1 e

′′
i (x).

4.4. Why Double Calibration?

Since uncalibrated ei (a decision stump of depth 1) receives
weighted samples as input, it is trained to perform better on
those with higher weights. As a result, we see in the first
row of figure 2 that one of the child nodes contains highly
weighted samples that ei performs well on—resulting in
a smaller confident peak closer to 0 or 1—while the other
child node contains the rest of the samples (and thus, a
similar number of positive and negative samples), producing
a larger underconfident peak near 0.5.

In obtaining e′i, we calibrate ei for the first time with
weighted samples. This step puts greater emphasis on cali-
brating probabilities for samples with higher weights, akin
to them being “seen multiple times” during training. This
effectively mitigates the effect that sample weighting has
in training the weak learners (which resulted in skewed
predictions), bringing confidence peaks closer to 0.5.

Finally, since e′i only undoes the sample weighting effect,
for true calibration, we must calibrate once again, without
sample weights. This yields e′′i , which in figure 2 is shown
to produce a spread of predicted probabilities expected from
a calibrated classifier. The doubly-calibrated e′′i can thus
attribute correct confidences to unseen test samples, unaf-
fected by the weights used during training.
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Table 1: Evaluation on the test set. First five models are uncalibrated (trained on 100% of the data). Train ACC and TACE for Platt,
Isotonic, and Beta are computed after training AdaBoost on 80% of the data and before performing the respective calibration methods.
Among variants of AdaBoost, best results are marked in bold.

DATASET METRIC LOGREG NBAYES DTREE STACKING ADABOOST PLATT ISOTONIC BETA OURS

LANDSAT

TRAIN ACC (↑) 0.886 0.640 0.964 0.947 0.930 0.920 0.920 0.920 0.895
TEST ACC (↑) 0.870 0.648 0.892 0.898 0.900 0.900 0.897 0.902 0.882

TRAIN TACE (↓) 0.021 0.266 0.0 0.061 0.397 0.396 0.396 0.396 0.036
TEST TACE (↓) 0.031 0.259 0.063 0.044 0.365 0.047 0.043 0.044 0.032

ABALONE

TRAIN ACC (↑) 0.769 0.687 0.900 0.818 0.800 0.798 0.798 0.798 0.754
TEST ACC (↑) 0.785 0.698 0.725 0.792 0.788 0.783 0.795 0.788 0.755

TRAIN TACE (↓) 0.031 0.075 0.0 0.049 0.282 0.283 0.283 0.283 0.043
TEST TACE (↓) 0.034 0.072 0.155 0.035 0.276 0.054 0.051 0.048 0.048

YEAST

TRAIN ACC (↑) 0.676 0.533 0.877 0.820 0.785 0.783 0.783 0.783 0.724
TEST ACC (↑) 0.663 0.505 0.707 0.707 0.734 0.714 0.720 0.714 0.731

TRAIN TACE (↓) 0.069 0.151 0.0 0.134 0.277 0.273 0.273 0.273 0.045
TEST TACE (↓) 0.084 0.142 0.161 0.073 0.224 0.066 0.063 0.061 0.056

5. Experiments and Discussion
5.1. Evaluation Metrics

Our experimental results are evaluated on two metrics: Ac-
curacy (ACC) and Thresholded-Adaptive Calibration Error
(TACE). TACE is computed with a threshold of ϵ = 0.01,
considering only predictions that exceed this threshold to
avoid infinitesimal confidences. Furthermore, we utilize a
class-conditioned adaptive binning approach with 10 bins
per class, where the predictions are first split based on true
class and then bin intervals are set to evenly distribute pre-
dictions across bins. The TACE is then defined as:

TACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k)− conf(r, k)|,

where K = 2 is the number of classes, R = 10 is the
number of bins, and acc(r, k) and conf(r, k) correspond to
the accuracy and confidence of bin r for class k respectively.
TACE is chosen over Expected Calibration Error (ECE) due
to the latter’s issues in bias-variance tradeoff and pathologies
in static binning schemes (Nixon et al., 2020).

5.2. Hyperparameters

Hyperparameters are determined by using a 5-fold cross-
validation procedure on the training set to avoid overfitting,
and keeping the test set unseen: γ = 0.05, k = 5 for landsat
and yeast, and γ = 0.04, k = 5 for abalone. The order of
double calibration is Platt Scaling then Beta calibration for
landsat, and Platt Scaling followed by Platt Scaling again for
abalone and yeast. Why we use these specific hyperparam-
eters is detailed in section 5.4. To make comparisons fair,
we reserve 20% of the data for calibration for post-training
calibration methods (since our model uses 5-fold CV, which
trains the model on 80% of the data every time).

5.3. Results

All figures are plotted for the landsat dataset, but show
similar trends for other datasets as well. The results, as
shown in table 1, demonstrate our model’s competitive per-

formance. Notably, our approach achieves lower TACE
than post-training calibration methods applied to AdaBoost
across all three datasets, indicating a significant improve-
ment in calibration. Furthermore, while our model exhibits
slightly lower accuracy scores when compared to other vari-
ants of AdaBoost, it generally outperforms other traditional
machine learning models. This is especially apparent in a
more complex dataset like yeast. Logistic Regression and
Stacking have a decent TACE even when uncalibrated, but
suffer from either lower accuracy or a very long runtime.
Therefore, we see that our model allows us to achieve the
best of both worlds, excelling in both accuracy and calibra-
tion. Qualitatively, figure 3 shows that our model’s calibra-
tion curve is observably closest to the ideal and has learned
to not be highly underconfident as it was when uncalibrated.

Figure 3: [a-e] show confidence histograms and [f] shows the reli-
ability diagram for AdaBoost with different calibrations applied.

It is worth noting that while post-training calibration tech-
niques are fast and efficient, they often lack the flexibility
of a training-based approach like ours. Although our model
incurs higher computational demands during the training
phase, this cost is a single-time incurrence and is recom-
pensed through the possibility of balancing the accuracy-
calibration error tradeoff for specific datasets. Thus, our
model not only achieves better calibration but also maintains
high accuracy, illustrating the benefits of our training-based
calibration approach in diverse ML scenarios.
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5.4. Ablation Studies

5.4.1. SINGLY-CALIBRATED WEAK LEARNERS

Could we have achieved the same competitive results by
only calibrating weak learners once using k-fold CV with
non-weighted samples?

Figure 4: Performance of our AdaBoost with singly-calibrated
weak learners as k is varied on landsat dataset.

As shown in Figure 5, the models are still highly uncali-
brated. The general trend for TACE, though noisy, is that
it tends to get worse with large k’s (smaller folds) as we
reserve lesser portions of the data for calibration, making
these sets less representative of the entire distribution.

5.4.2. k AND γ VS. TACE

Figure 5: Plot of how changing k and γ affect TACE on landsat
dataset using the double calibration order platt → beta.

Our model requires a trade-off between k and γ, as both are
needed for true calibration, explained in section 4.4. The
weight-undoing (first) calibration step risks overfitting with
large folds (see k = 3) and underfitting with small, non-
representative folds (see k = 10). In general, TACE tends
to decrease as γ increases, albeit with noise, by having more
data for the second calibration step.

5.4.3. ORDER OF DOUBLE CALIBRATION

As seen in Figure 6, the order in which different calibration
techniques are applied affects the error. Since the task of
the first calibration method is to undo the effect of weighted
samples, Isotonic Regression — a non-parametric, mono-
tonic, piecewise function minimizing squared loss — is not
able to model the complexities of the distribution of these
weighted sample confidences as effectively as Platt Scaling
is, which fits a sigmoid curve (which is also the distribution

Figure 6: Performance of our AdaBoost with varied ordering of
the two calibration methods for doubly-calibrated weak learners.

of model confidences) by minimizing cross-entropy.

5.4.4. NUMBER OF WEAK LEARNERS VS. ACC AND TACE

Figure 7: Performance of our AdaBoost with varied number of
weak learners on landsat dataset.

Figure 7 demonstrates that both accuracy and TACE scores
become better as we increase the number of weak learners
in our AdaBoost algorithm. This is because more classifiers
can contribute their data modellings to the ensemble. There
is, however, a threshold (at around 250) when TACE starts
to increase again, which is when variance in the learners
starts to dominate. Finding a good balance helps achieve
optimal metric scores.

6. Conclusion and Future Work
Our study illustrates that calibrated weak learners can form
a well-calibrated AdaBoost model, potentially surpassing
traditional post-hoc methods such as Platt scaling in per-
formance. The “double calibration” strategy introduced
here—first to counteract AdaBoost’s sample weight bias,
then to calibrate the model—offers performance benefits and
enhanced adaptability during the learning phase. Despite
these advantages, the approach incurs greater computational
costs during training. Future efforts will focus on analyz-
ing and optimizing the computational efficiency compared
to post-hoc calibration techniques. Additionally, we aim
to extend our research to multi-class classification tasks to
broaden the utility of our findings. This dual approach will
refine the calibration strategy, striving for a balance between
accuracy and computational practicality.
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